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Abstract 
The focus of our study is to assess fire risk zones using historical wildland fire ignition 
observations recorded between 1985 and 2004. Kernel density estimation, a non parametric 
statistical method for estimating probability densities, has been widely used for home range 
estimation in wildlife ecology. It has the advantage of directly producing density estimates 
that are not influenced by grid size and localization effects. Furthermore, it produces densities 
of any shape and analyzes any data distributed multi-modally or non-normally. Under this 
perspective, kernel density surfaces have been created and reclassified to construct fire zones. 
Approximately 60 percent of the 10 percent of forest fires occurred between 1985 and 2004, 
have been recorded within the most dangerous zone. Also, similar percentages have been 
recorded for the fires of the year 1992 and 2004 that have not been used in the analysis. These 
percentages differ significantly from the expected ones that arise under a random process (20 
percent), since in the proposed zoning system each class corresponds to 20 percent of the total 
area of the study site. 
 
Introduction 

Over the past several years, a trend towards occurrence of extreme natural 
hazards and disasters is observed directly or indirectly related to wildland fires. Fatal 
accidents also occur with losses of human lives among the fire fighting personnel and 
other civilians. Characteristic examples are demonstrated in the United States (2003), 
Canada (2002-2003), Greece (2000), Australia (2002-2003), and more recently from 
the large fires occurred in Iberian Peninsula and France (2003-2006). Under this 
perspective, fire fighting organizations design and implement operational projects to 
successfully face forest fires for prevention, forecast and suppression. Many factors 
such as requirements, labor, specialized personnel, availability of necessary means, 
and usually limited economic recourses compete to optimize such efforts and actions. 

Wildland fire risk zoning helps to orient a priori the managers towards the 
proper actions for civil protection. Fire risk zoning might be a strategic operational 
advantage for the proper development of a Decision Support System, since such 
actions can be applied with priority (spatial and temporal) inside the zones of high 
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risk. Reduction of the necessary costs and maximization of the benefits and outcomes 
can be considered. Fire risk zoning based on historical fire observations can 
contribute further for the proper and documented use and distribution of available 
resources. The diachronic value of those fire risk zones is a challenge and on the 
same time a requirement so that to become a real strategic operational tool for 
prevention and suppression. Moreover, preventive measures and actions can be 
revised based on the documented fire risk zoning and could be focused more on the 
high risk zones. Fire risk zones could be one of the basic inputs for the construction 
of fire risk maps aimed at more reliable spatial and temporal prediction of wildland 
fire occurrence. Based on the fire risk zoning a better and more justified distribution 
of the available resources can be achieved for fire prevention and suppression, 
including efficient monitoring inside these high risk zones. 

Due to fire characteristics and logistic problems, the precise detection of the 
actual ignition points is difficult and the recorded fire ignition locations contain 
positional inaccuracies. Positional as well as attribute uncertainties may result from 
factors such as small-scale or inaccurate, non-updated maps used to read the x and y 
coordinates or large interval resolutions (e.g., coordinates given only in degrees and 
minutes). In this case the assumption of exact locations, which point-based statistics 
require, is violated (Jacquez and Waller 2000). If the aim is to explain the spatial 
pattern of landscape fire regimes and/or the underlying causal factors these inaccurate 
point records may introduce substantial errors. Especially, if explanatory variables 
are extracted from other geo-referenced data layers using spatial overlay techniques, 
these records may lead to serious inaccuracies. 

In pattern analysis, very frequently a regular grid of quadrats is superimposed 
over the event distribution to allow the study of point pattern (Gatrell and others 
1996), however, assuming lack of spatial inaccuracies. To overcome problems 
resulting from superimposing a regular grid of quadrats over a point distribution, a 
“moving window” of fixed dimensions can be used as an alternative for estimating 
the intensity at each grid cell. In this case, the intensity at each grid cell is estimated 
using the number of points falling within the size of the “moving window” centered 
on each grid cell (Bailey and Gatrell 1995). Kernel estimation is an extension of the 
“moving window” concept where the fixed-size window is replaced by a three-
dimensional function (Gatrell and others 1996). 

In our study, fire risk zoning is implemented by using the kernel density 
estimation that is a well known and explored interpolation method. The basic 
principle of the proposed methodology is the presumption that wildland fire ignition 
points do not constitute exact point locations but fuzzy ones that define a broader 
area, where the actual point location lies inside. 
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Background 
Kernel density estimation, a non parametric statistical method for estimating 

probability densities, has been widely used for home range estimation in wildlife 
ecology (Worton 1989; Seaman and Powell 1996; Tufto and others 1996). It has the 
advantage of directly producing density estimates that are not influenced by grid size 
and localization effects. Furthermore, it produces densities of any shape and analyzes 
any data distributed multi-modally or non-normally (Seaman and Powell 1996). 

The bivariate kernel density estimator is mathematically defined as (Silverman 
1986; Worton 1989; Seaman and Powell 1996): 
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where n is the number of points, h is the smoothing parameter or the bandwidth, 
K is a kernel density function, x is a vector of coordinates that define the location 
where the function is estimated, and Xi are vectors of coordinates that define each 
observation i. 

The normal distribution function that has been used in the present study for 
kernel density estimation is given by the following functional form (Levine 2002): 
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where dij is the distance between a point observation (i) and any location in the 
region where the function is estimated (j), h is the bandwidth which represents the 
standard deviation of the normal distribution, Wi and Ii represents weight and 
intensity factors at the point location, respectively. 

Two types of kernel methods, depending on whether constant or multiple 
adaptive values are used for the smoothing parameter over the entire region, 
constitute the two alternative methods that can be applied in kernel density 
estimation; the fixed and adaptive method, respectively. In the fixed kernel mode, the 
smoothing parameter, which is defined in distance units, is constant over the entire 
area of interest. In the adaptive mode the smoothing parameter, which is defined by 
using a minimum number of point observations found under the kernel, varies 
depending on the concentration of point observations. This means that in areas of low 
concentration the smoothing parameter takes higher values than in areas of high 
concentration (Worton 1989). 

An important issue, however, and rather difficult to define when implementing 
kernel density interpolation, is the choice of the smoothing parameter of the kernel, 
both in the fixed and in the adaptive mode. Narrow bandwidths allow nearby 
observations to dominate the density estimate, while wide bandwidths favor distant 
locations (Worton 1989; Seaman and Powell 1996). According to Silverman (1986), 
the choice of the bandwidth depends mostly on the purpose for which the density 
estimate is used. If the aim is to explore the data and suggest models and hypotheses 
about them, it would be sufficient to choose the smoothing parameter subjectively by 
visual inspection. 
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Materials and Methods 
Study area and fire ignition points 

The fire database used in this study consists of the fire ignition points that 
occurred between 1985 and 2004 in Greece (Figure 1). The 20 years database 
contains in total 22312 fire events with x and y coordinates recorded in latitude and 
longitude using degrees and first minutes resulting in positional uncertainty of about 
±700 to ±925 meters in x and y axes. For data analysis, 90 percent of randomly 
chosen points (18049 fires) have been extracted from each year, while the rest 10 
percent (1996 fires) has been used to evaluate the results. Also, the complete year of 
1992 (1643 fires) and 2004 (624 fires) has not been used in data analysis since they 
kept only for data evaluation. The spatial distribution of the different fire datasets are 
shown in Figure 1. 

 

  

  

Figure 1 Wildland fire ignition points used for the construction and evaluation of fire 
zones 
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Methods 
Control points 

In general, events may be described either by using a bivariate point pattern 
consisting of a set of individual observations that correspond to events and control 
points, or a marked point pattern, where a continuous variable is attached to each 
individual observation (Gatrell and others 1996). Fire ignition points extracted from 
historical fire records match none of these two types. The control points are missing, 
and no continuous variables are attached to each individual observation; only x and y 
coordinates are extracted from the fire records database. Depending on the 
anticipated analysis and particularly on the multivariate statistical techniques, 
however, the fire database containing only x and y coordinates of ignition points is 
incomplete. To establish a bivariate fire point pattern, control points must be located 
using a sampling scheme. To avoid creating control points that would be on the same 
or nearby location to fire ignition points, we applied a random sampling scheme 
excluding certain buffer zones around fire ignition points. The buffer zones have 
been chosen based on the first and second mean nearest neighbor distance of fire 
ignition points. The first mean nearest neighbor distance of wildland fire ignition 
points equals 1023, while the second mean nearest neighbor distance is 1577.  
Consequently, random points were generated using a buffer zone of 1023 and 1577 
meters for creating two sets of control points and choosing afterwards the one which 
perform better. 

 

   

Figure 2 Control points were created using a random sampling scheme excluding, 
however, buffer zones of 1023 and 1577 meters around fire ignition points. 

Also, the mean nearest neighbour distance of fire ignition points was used to 
estimate the number of control points (Koutsias and others 2004). In total, 18049 fire 
event records between 1985 and 2004 were retrieved from the Hellenic Forest 
Service database. The mean nearest neighbour distance of these fire ignition points in 
the database was 1023 m. This means that fire ignition points represent a clumped 
spatial arrangement. Under a spatial random process, the mean nearest neighbour 
distance of 1023 m corresponds to 31540 points across the study area. These 31540 
points include both fire ignition points and the control points. Since there were 18049 
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fire ignition points, there should be 13491 control points (i.e., 31540 minus 18049) so 
that the control points (Figure 2) and fire ignition points summed together match the 
random distribution. 

 
Implementing the kernel approach to fire occurrence modeling 

To implement kernel density estimation in wildland fire occurrence, the fixed 
mode approach has been adopted in order to keep the smoothing parameter of the 
kernel constant over the entire study area. The incentive behind this decision was to 
avoid different treatments of the point observations over the areas with different 
degrees of concentration. In addition to the choice of the kernel type, which might not 
be so important, the choice of the smoothing parameter is very crucial since it 
controls the amount of variation of the estimates (Worton 1989). To define the size of 
the bandwidth the mean nearest distance of fire ignition points was considered. 

The association of the size of the smoothing parameter of the kernel to the mean 
nearest distance is reasonable, since the amount of point observations that is going to 
be interpolated is related to the information content. If the sample size is large, which 
corresponds to more informative datasets, then a finer interval resolution would be 
more suitable to avoid over-smoothing and loss of the variability in the estimates. For 
small size samples, which correspond to less informative datasets, a large bandwidth 
would be more appropriate, since a fine interval would lead to density estimations 
that may be perceived as nothing more than a random variation. The size of the 
smoothing parameter also defines the level of scale of the estimates; large intervals 
diminish local variability and their estimates are associated with global patterns, 
while narrow intervals preserve data variability and are associated to local patterns. 

Kernel density estimation was applied also to control points established using 
random design sampling restricted by the constraint of distance. Since, the kernel 
density estimation of control points refers to points, where no fires have been 
observed, the estimation was inverted to a negative scale by multiplying the original 
densities times the value of -1. The inversion to a negative scale preserves the general 
shape of the data distribution with a mirror effect, however. Finally, the kernel 
density estimates of both, the fire ignition events and the control points, were 
combined into one layer using spatial overlay functions. 

 

Results and Discussion 
Kernel density surfaces 

The constant value of the smoothing parameter of the kernel that has been 
chosen for the entire study area ensures the same weighting of the point observations 
over the areas with different degree of concentration. In our study the size of the 
smoothing parameter of the kernel was based on the mean nearest neighbor distance 
of fire ignition points. Kernel density interpolation was applied to fire ignition points 
using three alternative bandwidth sizes of 1023, 1577, and 2014 meters, that 
correspond to first, second, and third nearest neighbor. 

Kernel density estimation was applied also to control points established using 
random design sampling restricted by the constraint of distance. Since, the kernel 
density estimation of control points refers to points, where no fires have been 
observed, the estimation was inverted to a negative scale by multiplying the original 
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densities times the value of -1. The inversion to a negative scale preserves the general 
shape of the data distribution with a mirror effect, however. 

Finally, the kernel density estimation of both the fire ignition events and the 
control points were combined using spatial overlay functions.  

 

Assessment and evaluation of fire zones 
The kernel density surfaces of both, fire ignition points and control points, were 

reclassified to five classes for creating zones of fire occurrence. The reclassification 
of the density surfaces was based on the criterion of “equal areas” for each zone. 
Thus, each fire risk zone corresponds to 1/5 of the total area of the study site. Fire 
risk zones created by the two different types of control points and the three 
bandwidth sizes used are depicted in Figure 3. 

   

   

Figure 3 Kernel density surfaces using fire ignition points and control points created 
using a buffer zone of 1023 meters (upper line of images) and 1577 meters (bottom line 
of images), and using three bandwidth sizes that of 1023 meters (left column of images), 
1577 meters (middle column of images) and 2014 meters (right column of images). 

 

Since, each fire risk zone corresponds to 1/5 of the total area of the study site 
then it would be expected that fire ignition points occurred under complete spatial 
random processes would be distributed equal inside each zone. Thus, the expected 
number of fire ignition points in each zone would be 20% under random processes 
(Figure 4). Deviations from this expected distribution towards the high risk zones 
indicates a successful assessment of fire risk zones. 
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Figure 4 The expected frequency of overlaid points to each fire zone is 20 pct, since each 
fire zone corresponds to 20 pct of the total area of the study site. 

 

The 10 percent of forest fires occurred between 1985 and 2004, which 
correspond to 1996 observations, were spatially overlaid over the fire risk zones and 
the frequency distributions were estimated. Most of fire ignition points (60 percent) 
coincide to the extreme fire risk zone. Around 80 percent of fire ignition points were 
corresponded to the two highest fire occurrence zones (Figure 5). This frequency 
distribution deviates significantly from the expected ones under complete spatial 
random process and indicates the success of the fire zone assessment. Similar results 
were observed also when all fire ignition observations of the years 1992 and 2004 
were overlaid over the fire risk zones (Figure 6, Figure 7).  

Finally, it seems that the bandwidth sizes and buffer zones used in the analysis 
do not have a very important influence on the assessment of fire risk zones. A 
smoothing effect is certainly observed when increasing both the bandwidth size and 
the buffer zone for defining the control points. 
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Figure 5 Frequency distribution of the 10 pct of forest fires occurred between 1985 and 
2004 to each fire zone. 
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Figure 6 Frequency distribution of the 1992 fires to each fire zone. 

 
Forest fires 2004
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Figure 7 Frequency distribution of the 2004 fires to each fire zone. 

 
Conclusions 

Fire fighting organizations design and implement operational projects to 
successfully face forest fires for prevention, forecast and suppression. Many factors 
such as requirements, labor, specialized personnel, availability of necessary means, 
and usually limited economic recourses compete to optimize such efforts and actions. 
Wildland fire risk zoning helps to orient a priori the managers towards the proper 
actions for civil protection. Fire risk zoning might be a strategic operational 
advantage for the proper development of a Decision Support System, since such 
actions can be applied with priority (spatial and temporal) inside the zones of high 
risk. Reduction of the necessary costs and maximization of the benefits and outcomes 
can be considered. Fire risk zoning based on historical fire observations can 
contribute further for the proper and documented use and distribution of available 
resources. The diachronic value of those fire risk zones is a challenge and on the 
same time a requirement so that to become a real strategic operational tool for 
prevention and suppression. 

In our study fire risk zones have been constructed using historical wildland fire 
ignition observations recorded between 1985 and 2004, based on kernel density 
interpolation. Approximately 60% of the 10 percent of forest fires occurred between 
1985 and 2004 have been recorded within the most dangerous zone. Also, similar 
percentages have been recorded for the fires of the year 1992 and 2004 that have not 
been used in the analysis. These percentages differ significantly from the expected 
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one that arises under a complete random process (20%), since in the proposed zoning 
system each class corresponds to 20% of the total area of the study site. 
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